
CAD Tools for Creating 3D Escher Tiles

Graphics Lunch, UC Berkeley

February 26, 2009

Mark Howison

Overview

2

 2½D Tilings

 Incremental Delaunay Triangulation in Java

 Mesh-Cutting Algorithm

 Visual Debugging

 3D Tilings

 User Interface Issues

Introduction

3

 M.C. Escher popularized
intricately decorated
isohedral tilings

 Planar tilings can be
designed by hand, or with
available tools on the web

 Specialized CAD tools help
address the challenges of
tiling other 2-manifolds

 What are interesting tilings
of 3-space?

Tiling on 2-manifolds

4

In the plane

In the
Poincaré disk

On the sphere

On a genus-3
“Tetrus” surface

2½D Tilings

5

 Warm-up exercise before tackling full 3D

 Extruded 2D tilings form layers in 3-space

 Trivial case: extrude vertically, edit height field

 Fancier case: choose an “offset” between adjacent layers

Triangulation Library

6

 Need meshes for boundary representation of tiles

 Why implement another triangulation library?

 Chose Java for ease of UI development and portability

 Could not find existing libraries native to Java

 Using Triangle would require JNI or dumping/reading ASCII

 Precise results are unnecessary

 Limited by precision of Fused Deposition Machine

 Don’t need optimizations for large meshes, but do need
support for frequent modifications

 Opportunity to learn about data structures and algorithms
for triangulation

Delaunay Triangulation

7

 The circumcircle through any
triangle does not contain any other
vertices of the triangulation

 “Locally equiangular”: maximizes
the minimum of the six angles
within any two adjacent triangles

 Can use an in-circle test to determine
if a triangulation is Delaunay

 Can make a triangulation Delaunay
by flipping edges

Robustness

8

 Need reliable tests for determining if a vertex is:
 Left/right of a line (orient)
 Inside/outside the circumcircle of a face (in-circle)

 Exact arithmetic or adaptive precision arithmetic
 Slow (exact) or complicated implementation

(adaptive precision)
 Precision is not crucial for our application

 Snap to integer coordinates, use integer
arithmetic
 Rotating/skewing/scaling the tile and computing

intersections is awkward
 Modern processors are designed for flops

 Merge vertices that lie within an epsilon radius
 Use an epsilon >> floating point round-off error
 Can still have problems with vertices within <

epsilon of edges
 Robust enough for our purposes (“quasi-robust” in

Shewchuk’s categorization)

Three Basic Types of Algorithms

9

 Divide-and-conquer (e.g., Shamos and Hoey)

 Typically used to generate the Voronoi diagram

 Can be modified to return the Delaunay triangulation, the
dual of the Voronoi diagram

 Sweepline (e.g., Fortune)

 Moving “front” along an axis guarantees that circumcircles
behind the front can’t contain new vertices

 Incremental insertion (e.g., Lawson)

 Performance is limited by how well you can locate which
triangle contains the insertion site

 Many optimizations are available

Lawson’s Incremental Insertion Algorithm

10

 Nice properties
 Maintains the integrity of the mesh after every vertex insertion

 Easy to implement

 Basic idea
 Locate triangle containing insertion site

 Trisect the triangle; add all involved edges to a queue

 Perform in-circle test on queue
 If an edge fails the test, flip it and add its four neighbor edges back

onto the queue

 Guaranteed to terminate: can show that circumradii are strictly
decreasing and there are only finitely many triangulations (Sibson)

 Issues
 Locating insertion sites is the bottle-neck

 How do you insert a site outside of the boundary?

Locating Insertion Sites

11

 Easy if you have a convex boundary: walk along the
triangles

 For non-convex boundaries, we load on-demand copies
of the neighboring tiles to fill concavities

 Heuristic:
use the last inserted
site as the search
origin, since a designer
will often add vertices
in localized groups

Moving/Removing Interior Vertices

12

 Temporary holes arise: need polygon filling algorithm

 We use a naïve O(n2) algorithm for ease of
implementation

 Recursively cuts off “ear” triangles

 Small polygons, mostly convex: performance isn’t an issue

 If performance were an issue, could use a smarter
“trapezoidal decomposition” algorithm

Moving/Removing Boundary Vertices

13

 Case 1: Move vertex along the boundary

 Assign new vertex coordinates

 Case 2: Move vertex into the exterior

1. Assign new vertex coordinates

2. Remove attached non-boundary edges

3. Fill polygon left by removal

1. 2. 3.

Moving/Removing Boundary Vertices (Cont’d)

14

 Case 3: Move vertex into the interior
1. Assign new vertex coordinates

2. Remove …
a) attached non-boundary edges

b) edges that intersect adjacent boundary edges

c) any exterior edges and points

3. Fill polygon left by removal

1. 2. 3.

Mesh-Cutting Algorithm

15

 For forming the bottom face of an offset 2½D tile

 Given an underlying mesh and a “cookie-cutter” template

 Truncates the geometry of the underlying mesh to fit inside

Mesh-Cutting Algorithm (Cont’d)

16

1. Template offset is specified by user

2. Construct template as an empty
boundary “shell” with temporary
edges

 Follow the template to identify
intersections with the underlying
mesh

 Load underlying mesh copies on-
demand

 Add fragments that lie inside the
template to a queue; check future
intersections against the fragment
queue

1.

2.

Mesh-Cutting Algorithm (Cont’d)

17

3. After finding all intersections,
add fragments as constraint
edges to the template shell

4. Perform a flood search to capture
the remaining geometry inside
the template

3.

4.

Visual Debugging

18

 Sophisticated algorithms are difficult to debug using
traditional text-based debuggers/methods

 Geometric/graphics algorithms offer the advantage of
visual debugging options
 Animation and visualization help identify extreme, difficult,

or unexpected cases

 Can isolate and visualize subtasks within the algorithm

 Implemented in Java2D by overriding the event-queue
repainting mechanism
 Events can be inserted mid-algorithm to create visual

“breakpoints”

 Events can specify which geometric features to highlight

3D Tilings

19

 Exploring two fundamental domains:

 #1: Truncated octahedron, derived from the body-centered
cubic lattice

3D Tilings

20

 Exploring two fundamental domains:

 #2: Rhombic dodecahedron, based on the densest sphere
packing

Overview of 3D Editing Interface

21

 Phase I:
 Individual “panes” of the 3D tile can

be Delaunay triangulated
 Vertices can be moved in 2D within

pane interior
 Boundary vertices cannot be moved

yet, since this would create non-
planar panes

 Phase II:
 All vertices can be moved in 3D:

 Last selected point defines an axis
through the origin

 Can move points parallel to axis or in
perpendicular plane

 Local edits available by trisecting
faces, but no Delaunay guarantee

 Limited “roll-back” to Phase I

User Interface Issues

22

 Occlusion is an obstacle to free-form editing of 3D tiles

 Because of symmetry, edits in the current view will also
change opposite faces

 Creating a convex feature (e.g. a fish fin) creates a
corresponding concave feature (e.g. eye socket) on the
opposite side

 Dual cameras can show convex/concave pairings

User Interface Issues (Cont’d)

23

 3D domains can be scaled/skewed and remain space-filling

 What is the easiest way to manipulate this affine transform?

 Created a widget with 9 control points, each restricted to one
degree of freedom

 Widget maintains same orientation as camera

User Interface Issues (Cont’d)

24

 3D tilings can have complicated interlocking features

 Nearest neighbors can be scaled/translated to reveal
the interface between adjoining tiles

Scaled to 85%
Scaled to 85%
+ translated 0.6
tile lengths away

Conclusion

25

 Developed a CAD tool for designing layered 2½D tiles
 Can draw on an existing “vocabulary” of 2D tilings from Escher’s

sketchbook

 3D cubic lattice tiles are more difficult to design
 The entire editable surface is constrained to fit seamlessly with

adjacent tiles
 In the 2D case, only the 1D border is subject to symmetry constraints, while

the interior can be decorated freely

 There is no Escher sketchbook for 3D

 Addressed several UI issues in our prototype 3D tool
 Two-stage editing allows for Delaunay triangulation
 Dual cameras reveal occluded features
 Widget for controlling skew enables high-level editing operations
 Interactive display of nearest neighbors shows how tiles interlock

 Will address future UI issues as we try to create attractive 3D
tiles!

